
CAD Tools for Creating 3D Escher Tiles

Graphics Lunch, UC Berkeley

February 26, 2009

Mark Howison

Overview

2

 2½D Tilings

 Incremental Delaunay Triangulation in Java

 Mesh-Cutting Algorithm

 Visual Debugging

 3D Tilings

 User Interface Issues

Introduction

3

 M.C. Escher popularized
intricately decorated
isohedral tilings

 Planar tilings can be
designed by hand, or with
available tools on the web

 Specialized CAD tools help
address the challenges of
tiling other 2-manifolds

 What are interesting tilings
of 3-space?

Tiling on 2-manifolds

4

In the plane

In the
Poincaré disk

On the sphere

On a genus-3
“Tetrus” surface

2½D Tilings

5

 Warm-up exercise before tackling full 3D

 Extruded 2D tilings form layers in 3-space

 Trivial case: extrude vertically, edit height field

 Fancier case: choose an “offset” between adjacent layers

Triangulation Library

6

 Need meshes for boundary representation of tiles

 Why implement another triangulation library?

 Chose Java for ease of UI development and portability

 Could not find existing libraries native to Java

 Using Triangle would require JNI or dumping/reading ASCII

 Precise results are unnecessary

 Limited by precision of Fused Deposition Machine

 Don’t need optimizations for large meshes, but do need
support for frequent modifications

 Opportunity to learn about data structures and algorithms
for triangulation

Delaunay Triangulation

7

 The circumcircle through any
triangle does not contain any other
vertices of the triangulation

 “Locally equiangular”: maximizes
the minimum of the six angles
within any two adjacent triangles

 Can use an in-circle test to determine
if a triangulation is Delaunay

 Can make a triangulation Delaunay
by flipping edges

Robustness

8

 Need reliable tests for determining if a vertex is:
 Left/right of a line (orient)
 Inside/outside the circumcircle of a face (in-circle)

 Exact arithmetic or adaptive precision arithmetic
 Slow (exact) or complicated implementation

(adaptive precision)
 Precision is not crucial for our application

 Snap to integer coordinates, use integer
arithmetic
 Rotating/skewing/scaling the tile and computing

intersections is awkward
 Modern processors are designed for flops

 Merge vertices that lie within an epsilon radius
 Use an epsilon >> floating point round-off error
 Can still have problems with vertices within <

epsilon of edges
 Robust enough for our purposes (“quasi-robust” in

Shewchuk’s categorization)

Three Basic Types of Algorithms

9

 Divide-and-conquer (e.g., Shamos and Hoey)

 Typically used to generate the Voronoi diagram

 Can be modified to return the Delaunay triangulation, the
dual of the Voronoi diagram

 Sweepline (e.g., Fortune)

 Moving “front” along an axis guarantees that circumcircles
behind the front can’t contain new vertices

 Incremental insertion (e.g., Lawson)

 Performance is limited by how well you can locate which
triangle contains the insertion site

 Many optimizations are available

Lawson’s Incremental Insertion Algorithm

10

 Nice properties
 Maintains the integrity of the mesh after every vertex insertion

 Easy to implement

 Basic idea
 Locate triangle containing insertion site

 Trisect the triangle; add all involved edges to a queue

 Perform in-circle test on queue
 If an edge fails the test, flip it and add its four neighbor edges back

onto the queue

 Guaranteed to terminate: can show that circumradii are strictly
decreasing and there are only finitely many triangulations (Sibson)

 Issues
 Locating insertion sites is the bottle-neck

 How do you insert a site outside of the boundary?

Locating Insertion Sites

11

 Easy if you have a convex boundary: walk along the
triangles

 For non-convex boundaries, we load on-demand copies
of the neighboring tiles to fill concavities

 Heuristic:
use the last inserted
site as the search
origin, since a designer
will often add vertices
in localized groups

Moving/Removing Interior Vertices

12

 Temporary holes arise: need polygon filling algorithm

 We use a naïve O(n2) algorithm for ease of
implementation

 Recursively cuts off “ear” triangles

 Small polygons, mostly convex: performance isn’t an issue

 If performance were an issue, could use a smarter
“trapezoidal decomposition” algorithm

Moving/Removing Boundary Vertices

13

 Case 1: Move vertex along the boundary

 Assign new vertex coordinates

 Case 2: Move vertex into the exterior

1. Assign new vertex coordinates

2. Remove attached non-boundary edges

3. Fill polygon left by removal

1. 2. 3.

Moving/Removing Boundary Vertices (Cont’d)

14

 Case 3: Move vertex into the interior
1. Assign new vertex coordinates

2. Remove …
a) attached non-boundary edges

b) edges that intersect adjacent boundary edges

c) any exterior edges and points

3. Fill polygon left by removal

1. 2. 3.

Mesh-Cutting Algorithm

15

 For forming the bottom face of an offset 2½D tile

 Given an underlying mesh and a “cookie-cutter” template

 Truncates the geometry of the underlying mesh to fit inside

Mesh-Cutting Algorithm (Cont’d)

16

1. Template offset is specified by user

2. Construct template as an empty
boundary “shell” with temporary
edges

 Follow the template to identify
intersections with the underlying
mesh

 Load underlying mesh copies on-
demand

 Add fragments that lie inside the
template to a queue; check future
intersections against the fragment
queue

1.

2.

Mesh-Cutting Algorithm (Cont’d)

17

3. After finding all intersections,
add fragments as constraint
edges to the template shell

4. Perform a flood search to capture
the remaining geometry inside
the template

3.

4.

Visual Debugging

18

 Sophisticated algorithms are difficult to debug using
traditional text-based debuggers/methods

 Geometric/graphics algorithms offer the advantage of
visual debugging options
 Animation and visualization help identify extreme, difficult,

or unexpected cases

 Can isolate and visualize subtasks within the algorithm

 Implemented in Java2D by overriding the event-queue
repainting mechanism
 Events can be inserted mid-algorithm to create visual

“breakpoints”

 Events can specify which geometric features to highlight

3D Tilings

19

 Exploring two fundamental domains:

 #1: Truncated octahedron, derived from the body-centered
cubic lattice

3D Tilings

20

 Exploring two fundamental domains:

 #2: Rhombic dodecahedron, based on the densest sphere
packing

Overview of 3D Editing Interface

21

 Phase I:
 Individual “panes” of the 3D tile can

be Delaunay triangulated
 Vertices can be moved in 2D within

pane interior
 Boundary vertices cannot be moved

yet, since this would create non-
planar panes

 Phase II:
 All vertices can be moved in 3D:

 Last selected point defines an axis
through the origin

 Can move points parallel to axis or in
perpendicular plane

 Local edits available by trisecting
faces, but no Delaunay guarantee

 Limited “roll-back” to Phase I

User Interface Issues

22

 Occlusion is an obstacle to free-form editing of 3D tiles

 Because of symmetry, edits in the current view will also
change opposite faces

 Creating a convex feature (e.g. a fish fin) creates a
corresponding concave feature (e.g. eye socket) on the
opposite side

 Dual cameras can show convex/concave pairings

User Interface Issues (Cont’d)

23

 3D domains can be scaled/skewed and remain space-filling

 What is the easiest way to manipulate this affine transform?

 Created a widget with 9 control points, each restricted to one
degree of freedom

 Widget maintains same orientation as camera

User Interface Issues (Cont’d)

24

 3D tilings can have complicated interlocking features

 Nearest neighbors can be scaled/translated to reveal
the interface between adjoining tiles

Scaled to 85%
Scaled to 85%
+ translated 0.6
tile lengths away

Conclusion

25

 Developed a CAD tool for designing layered 2½D tiles
 Can draw on an existing “vocabulary” of 2D tilings from Escher’s

sketchbook

 3D cubic lattice tiles are more difficult to design
 The entire editable surface is constrained to fit seamlessly with

adjacent tiles
 In the 2D case, only the 1D border is subject to symmetry constraints, while

the interior can be decorated freely

 There is no Escher sketchbook for 3D

 Addressed several UI issues in our prototype 3D tool
 Two-stage editing allows for Delaunay triangulation
 Dual cameras reveal occluded features
 Widget for controlling skew enables high-level editing operations
 Interactive display of nearest neighbors shows how tiles interlock

 Will address future UI issues as we try to create attractive 3D
tiles!

